HÜCRE İSKELETİ
Hücre iskeleti
Hücrenin % 75 ' lik kısımının su olduğunu belirtmiştik.İçerisinde bu kadar fazla miktarda su ihtiva eden bir yapının dağılmadan ayakta durabilmesi, hücre içerisindeki iskelet ve tıpkı kaslar gibi hareket eden bir tür sistem sayesinde mümkün olmaktadır.
Hücre içerisinde sistematik olarak yerleşmiş olan " Mikrotubul " ve " Mikroflament " ler hücre iskeletini meydana getiren ana unsurlardır.
Soldaki şekilde hücre zarının hemen altından yerleşmeye başlayan mikrotubul (mavi renkli çubuklar) ve mikroflamentleri (sarı renkli ağsı yapı) görmektesiniz.
Mikrotubuller düz yapıdadırlar ve dallanma göstermezler.Kalınlıkları ise 20 - 25 nm arasında değişir.Mikrotubuller resimde çok basit birer çubuk gibi görünürler fakat iç kısımları oldukça karmaşıktır.Öyleki mikrotubullerin içerisinde dairesel olarak sıoralı 13 adet alt birim vardır.Bu birimlerin arasında yani merkezde ise elektronca yoğun bir bölge vardır.
Mikrotubuller hücre bölünmesi esnasında sayılarını artırırlar.
Mikrotubullerin belli başlı görevleri ise sentriyollerin, sillerin ve kamçıların yapısal unsurlarını oluşturumaları şeklinde sıralanabilir.Bunlardan başka kan pulcukları ile daha birçok hücrede iskelet sistemini oluştururlar.Sinir hücrelerinde ise materyal transferinde iş görürler.
Mikroflamentler ise mikrotubullerin aksine ağsı bir yapı gösterirler ve kalınlıklarıda 7 nm kadardır.Yani mikrotubullerin 3 te biri kadar kalınlıktadır.Mikroflamentler hücrenin hareketi ve hücre kasılmasında fonksiyonel yapılardır.Mikroflamentler hücre içerisinde sayıca az olmasına karşın kas hücrelerinde oldukça gelişmiş bir yapıya sahiplerdir.Kas hücrelerinde hepimizin yakından tanıdığı iki proteini ihtiva eden iki çeşit mikroflament vardır.
Birinci mikroflamentimiz " Aktin " adı verilen bir çeşit protein taşır.İkinci mikroflamentimiz ise " Miyozin " adı verilen diğer bir çeşit proteini ihtiva eder.İçerdikleri proteinlerle birbirinden farklılaşmış bu mikroflamentler, mekaniksel ve kimyasal etkileşimlerle birbirleri üzerinde kayarak içinde bulundukları kas hücresinin hareketini sağlarlar.
Mikroflamentler aynı zamanda hücre zarının endositoz ve ekzositoz hareketlerini sağlayarak kese oluşturma yöntemiyle hücre içerisine büyük moleküllerin alınmasını sağlarlar.
Organeller
Hücre içerisinde herbiri birbirleriyle etkileşim içerisinde bulunan birçok organel ve bu organellere yardımcı unsurlar vardır.Fakat bu organeller gerek sayı olarak gerekse yapı olarak hücreden hücreye farklılık gösterebilir.
Biz en temel olarak bitki ve hayvan hücresini karşılaştıracağız.
Soldaki şekilde tipik bir hayvan hücresi görülmektedir.
Hayvan hücreleri ile bitki hücreleri yapı itibariyle pek fark göstermeselerde organel büyüklükleri, sayıları ve fonksiyonları bakımından farklılık gösterirler.
Şekildede görüldüğü gibi Nukleus hücrenin ortasında konumlanmıştır.Bundan başka hayvan hücrelerinin dış yüzeylerinde çeper yoktur.Çeper yanlızca bitki hücrelerine mahsus bir yapıdır.
Genel olarak bakıldığında hücre içerisinde organellerin oldukça homojen dağıldıkları farkedilebilir.
Bitki hücresi hayvan hücresiyle arasındaki fark oldukça belirgindir.
Bitki hücresinin en dış tarafında membran'a ilave olarak kalın bir yapıya sahip " Selüloz çeper " görülmektedir.Çeper bitki hücresini hem dış ortamlardan korur hemde hücreye sertlik verir.Bu yüzden bitki hücreleri hayvan hücreleri kadar esnek değildir.
Ayrıca bitki hücresinde " Vakuol " oldukça büyüktür.
Vakuol esas olarak depo organı olarak iş görür ve yüksek miktarda su içerir.Mesela fotosentez reaksiyonları sonucunda elde edilen nişasta, karbonhidrat ve diğer besin maddeleri vakuolde depo edilir.
Bitki ve hayvan hücreleri arasında organeller dışında biyokimyasal farklarda vardır.Mesela bitki hücresinde fotosentez için gerekli olan " Klorofil " molekülü mevcuttur.Ve yine bitki hücrelerinde polisakkaritler nişasta halinde depo edilirler.Hayvan hücrelerinde ise polisakkaritler " Glikojen " şeklinde depo edilir ve hayvan hücrelerinde klorofil molekülü bulunmaz.Bu yüzden hayvanlar fotosentez yapamazlar.
İlk organelimiz " Endoplazmik retikulum ".
Endoplazmik retikulum
Endoplazmik retikulum hücre içerisinde madde iletimini sağlayan boru ağı gibi iş görür.Hücreyi bir şehir gibi düşünürseniz endoplazmik retikulumuda bu şehrin su borusu şebekesi gibi düşünebilirsiniz.
Endoplazmik retikulum hemen hemen tüm hücrelerde bulunur.Fakat hücreden hücreye yapısal olarak farklılık gösterebilir.Örneğin bazı hücrelerde yassı kese şeklinde olmasına karşın diğer bazı hücrelerde ise tubular (boru şeklinde) bir yapı gösterebilir.
Şekildede gördüğünüz gibi endoplazmik retikulumun bir kesiti görülmektedir.
Şekilde gösterilen endoplazmik retikulum granüllü bir yapıya sahiptir.Yani üzerinde
" Ribozomlar " tutunmuş bir vaziyettedir.Bu tip organellere kısaca GER denir
Endoplazmik retikulumun üzerinde garnül yani " Ribozom " bulunmayan tipleride vardır.Böyle organellerede kısaca DER (Düz yüzlü ER) denir.Bazı hücrelerde DER ile GER yanyana konumlanırlar ve birbirleriyle bağlantılıdırlar.
DER ile GER çeşitli hücrelerde farklı olarak oranlanmıştır.Mesela pankreas ve kan hücrelerinde GER daha baskın bulunurken, adrenal korteks gibi hormon tabiatli sıvı salgılayan bezlerde ise DER daha baskın bulunur.Buna karşın DER ve GER ' in eşit oranda yer kapladığı hücrelerde vardır.Örneğin karaciğer hücresi gibi.
Hücrenin nasıl ki çevresini kuşatan bir zarı var ise hücre içerisindeki her organelinde çevresini kuşatan kendine özgü bir birim zarı vardır.Şekilde endoplazmik retikulumun kıvrımlı yapısı göz önüne alınarak zarların hangi tarafının göründüğü belirtilmiştir.
Kahverengi ile boyalı bölge, endoplazmik retikulum zarının dış yüzeyini temsil etmektedir.
Yani zarın bu bölgesi, içinde bulunduğu sitoplazmaya bakarken, mor ile boyalı bölge endoplazmik retikulumun iç tarafına yani " Matrix " ' ine bakmaktadır.
Üzerinde ribozom bulunan endoplazmik retikulum, ribozom tarafından üretilen proteinleri kendi bünmyesine alır.Burada proteinler işlenerek fonksiyonel yapısına kavuşturulur.Örneğin üretilen protein bir enzim haline getirilecekse, protein, endoplazmik retikulum içerisinde işlendikten sonra hücrenin değişik yerlerine transfer edilir.Bundan ayrı olarak diğer materyaller, iyonlar ve besin maddeleride hücrenin gerekli yerlerine endoplazmik retikulum ile taşınırlar.
Organelimiz bundan ayrı olarak şimdi göreceğimiz " Golgi " aygıtına da biyokimyasal materyaller gönderir.Fakat bunu kanallarla yapmak yerine " Transfer vesikülleri " ile gerçekleştirir.
Golgi aygıtı
Şekli, ardışık olarak sıralanmış keselere benzeyen golgi aygıtı, endoplazmik retikulumla bağlantılı olarak vesikül üretmekle görevli bir organeldir.
Golgi aygıtı esas olarak 3 bölgeden oluşur.Bu organel nukleusa yakın bölgelerde konumlanmış olup nukleusa yönelik olan kısımı " Olgun bölge ", hücre zarı tarafına bakan kısım ise " Oluşma bölgesi " adını alır.Ortadaki bölge ise geçiş bölgesidir.
Şekilde bir golgi aygıtının kısımları net olaka gözüküyor.
En alttaki kısımlar yukarıdaki bölgelere göre daha ince olup " Oluşma bölgesi " ' ni temsil etmektedir.Yukarıdaki kısımlar ise kenarları kalınlaşmış bir yapıya sahiptir ve "Olgunlaşmış bölgeler " ' i temsil etmektedirler.Ribozomlar tarafından üretilen ve endoplazmik retikulumda biriktirilen polipeptidler (proteinler) daha sonra geçiş vesikülleri ile golgi aygıtına ulaşırlar (Şeklin en altındaki serbest vesiküller).
Golgi aygıtına ulaşan polipeptidler, hücre tarafından üretilen polisakkaritlerle (şeker molekülleri) ile etkileşim içerisine girerek golgi aygıtı içerisinde bir seri işleme tabi tutulur.Bu seri işlemler devam ederken, moleküller golgi aygıtının olgun bölgesine yani şeklin üst bölgesindeki keselere doğru hareket ederler.Ve nihayetinde golgi aygıtından kökenlenen bir zar vasıtasıyla sentezlenen salgı veya sindirici enzimler vesikül halinde sitoplazmada serbest olarak yüzmeye başlarlar.
Salgı vesikülleri, farklı hücrelerin ürettikleri farklı biyokimyasal özelliklere sahip maddeleri ihtiva ederler.Bu biyokimyasal maddeler hormonda olabilir enzimde olabilir.
Sindirici enzim içeren vesiküllere ise " Lizozom " adı verilir.Lizozomların içerdikleri sindirici enzimlerin pH ' ı çok düşüktür ve asidik yapıya sahiptir.İçerdikleri bu asidik tabiattaki sıvılarla hücre içerisine alınan besin maddelerini tıpkı midemiz gibi sindirmeye başlarlar.Lizozomlar aynı zamanda hücre içerisinde fonksiyonlarını yitirmek üzere olan yaşlanmış organelleride bünyelerine alarak eritip yok ederler.
" Otoliz " adı verilen hücre intiharlarıda lizozomlar tarafından gerçekleştirilen bir olaydır.Bir canlı öldükten hücrelerin içerisinde bulunan lizozomların zarları parçalanır ve lizozom içerisindeki asidik enzim serbest hale geçer.Serbest hale geçen enzimler bütün hücre organellerine etki ederek onları eritir ve hücreyi yok eder.
Ölmüş bir hayvan cesedinin birkaç gün içerisinde çürüyüp kokmasının bir nedenide budur.
Ribozomlar
Genetik sayfamızda üzerinde durduğumuz ribozomların daha derinine inerek nasıl bir yapıya sahip olduklarını göreceğiz.
Ribozomlar her hücre içerisinde bulunan bir organeldir.Bakteri hücresinde hiçbir organel bulunmasa bile mutlaka ribozom vardır.Bunun nedeni ise enzim ve proteinlerin her hücre için mutlaka olması gerektiğidir.Dolayısıyla enzim ve proteinlerde ancak ribozomlar tarafından üretildiği için ribozom her hücrede mutlaka vardır.Fakat sayı olarak hücreden hücreye farklı olabilir.
Ribozomlar mikroskopla gözlendiklerinde küçük partiküller halinde görülürler.Yalın gibi görünen bu partiküllerin bile fonksiyonlarını kusursuzca yerine getirebilmeleri açısından uygun bir morfolojik yapıya sahip olması, hücre içerisindeki dizaynı gözler önüne sermektedir.
Ribozomlar bildiğimiz gibi mRNA yı okuduktan sonra doğru tRNA yı mRNA üzerine yerleştirip protein sentezini gerçekleştiren organeldir.Fakat mRNA yı okuma ve tRNA yı yerleştirme işlemi hücre tarafından hassasiyetle yürütülen bir sentez işlemidir.Ribozom ise üstlendiği bu hassas görevi mükemmel anatomik yapısı sayesinde yerine getirir.
Şekilde biri büyük diğeri küçük iki adet ribozom " Alt birimi " görülmektedir.Bu alt birimlerin şekli bizim için oldukça anlamsız gibi gelsede protein üretimi için oldukça büyük önem taşır.Bu alt birimler bir araya gelip bağ kurduktan sonra " Ribozom kompleksi " ' ni meydana getirirler
Ribozomlar RNA ve proteinlerden meydana gelirler.Ribzom üzerinde mRNA nın bağlanacağı bir bölge bulunurki bu bölge mRNA yı tanıyarak ribozoma tutunmasını sağlar.Ribozom aynı zamanda tRNA yıda tanıyacak şekilde özelleşmiştir.mRNA nın ribozoma nasıl bağlandığını ve tRNA ların ribozom üzerinde nasıl konumlanıp protein sentezlediklerini bir şekille görelim.
Birinci şekilde ribozom kompleksi ve bu kompleksin içerisinde ayırt edilen iki bölge görülmekte.
Birisi P bölgesi diğeri A bölgesi olarak adlandırılan bu bölgeler, tRNA ların bağlanma bölgelerini temsil etmektedirler.
İkinci şekilde, protein sentezini birinci tRNA ile başlatmış olan bir ribozom görülüyor.Proteini oluşturacak olan ilk amino asiti taşıyan tRNA ribozomun A bölgesine bağlanır.Bağlanmadan hemen sonra ribozom mRNA nın ikinci kodonunu (3 lü dizi) okumaya başlar ve tRNA yı P bölgesine doğru kaydırır.
A bölgesi böylelikle boşalmış olur (3.şekil).Ribozom böyle yaparak birinci amino asititn hemen arkasından gelen ikinci amino asit için yer açmış olur.İkinci amino asit A bölgesine bağlandığında amino asitlerde yanyana gelecek ve birbirleriyle bağ yapacaklardır.
Bu bağa " Peptid " bağı denir.Binlerce amino asitin bağlanmış haline ise " Polipeptid " adı verilir.
İnsanı hayranlık içerisinde bırakan bu sistem yanlızca bununlada sınırlı değildir.Hücre, proteine çok fazla ihtiyacı olduğu zamanlarda derhal protein sentezini başlatır.Fakat mRNA nın okunup tRNA ların okunan bu kodonlara göre bağlanması hücre için hızlı bir işlem değildir.
Bu yüzden mRNA tıpkı kağıt fabrikalarında bir merdaneden çıkıp diğer bir merdaneye giren kağıtlar gibi, seri olarak dizilmiş ribozom kompleksleri tarafında ardı ardına okunur.Bunu aşağıdaki şekle bakarak açıklamaya çalışalım.
Şekilde bir protein sentez aşamasının gerçek halini görmektesiniz.
Ribozomlar tıpkı bir boncuk dizisi gibi yanyana dizilmişlerdir.Biraz zor farkedilen mRNA ise bir ribozomdan çıkıp diğer bir ribozoma ardı ardına girmektedir.Resmin sağ tarafındaki protein zinciri sol tarafındaki protein zincirlerinden daha uzundur. Çünki mRNA ilk olarak en sağdaki ribozom tarafından okunmaya başlanmış ve ilk protein sentezi sağdaki ribozomlarda başlamıştır.Buradanda anlaşılacağı gibi mRNA nın ilerleme yönü sağdan sola doğrudur.
Hücre böyle bir mekanizma kullanarak birim sürede ürettiği protein zinciri sayısını, ribozom sayısı oranında artırmış ve zamandan tasarruf etmiştir. Hücrenin zamandan tasarruf etmek için bu derece mükemmel bir sistem kulanması, üstün bir güç tarafında yaratıldığını apaçık ortaya koymaktadır.
Sizler şu an bu yazıları okurken vücudunuzdaki trilyonlarca hücre bu kusursuz mekanizma ile sessiz bir şekilde hiç durmadan protein üretmektedir.
Mitokondri
Mitokondri, hücre için gerekli olan enerjinin üretildiği bir organeldir.Bu organelde tıpkı diğer organeller gibi birim zar ile çevrilidir fakat iç kısımındaki zar dıştaki gibi düz değildir ve kıvrımlar meydana getirir.Bu kıvrımlara ise " Krista " adı verilir.
Mitokondri içerisinde cereyan eden kimyasal olaylar oldukça karmaşıktır.Hücrede bulunan üç binin üzerindeki enzimlerden ayrı olarak mitokondri içerisine yüzlerce enzim görev almıştır.
Şekildede görüldüğü gibi mitokondrinin iç tarafındaki zar oldukça fazla kıvrım yapmıştır.Zarın bu şekilde kıvrılmasının nedeni, yüzey alanını genişleterek daha fazla kimyasal reaksiyona yataklık yapmak içindir.
Mitokondrinin içerisinde özellikle fosforilasyon reaksiyonlarında ve elektron transfer zincirinde rol oynayan enzimler çok sayıdadır.Mitokondrinin en fazla ürettiği biyokimyasal molekül ise ATP dir.ATP hücrenin enerji isteyen basamaklarında kullanılan ve yıkıma uğradığı zaman yüksek kaloride ısı veren bir moleküldür.Üretilen ATP daha sonra mitokondri zarından sitoplazmaya geçer ve gerekli yerlerde kullanılır.
Şekilde bir bitki hücresine ait olan bu mitokondride, organelin membranına yerleşmiş olan proteinleri ve oksidasyonda rol alan enzimleri görmektesiniz.
Bu enzimler belirli molekülleri yapılarına alıp okside edebilir veyahut bu moleküllerden H (+) iyonu koparabilirler.Koparılan elektron ve protonlar mitokondri matriksi içerisinde dolanarak kimyasal basamaklara girerler.Şeklin sağ tarafında mitokondri matriksinden bir proton sitoplazmaya verilmekte, aynı zamanda ADP (Adenin di fosfat) ' ye bir fosfat daha bağlanarak ATP (Adenin tri fosfat) meydana getirilmektedir.
Tabii burada gösterilen ATP üretimi, sentezin son basamağıdır.Gerçekte bir ATP üretmek için mitokondri içinde çeşit çeşit reaksiyonlar meydana gelir.ATP üretmek için kullanılan moleküllerden biriside Glikozdur.Glikoz 6 karbonlu bir molekül olup (C6H12O6) mitokondri içerisinde 3 karbonlu piruvata kadar parçalanır.Piruvat oksijen varolduğu hallerde oksijenle tepkimeye girerek daha değişik maddelere indirgenir.Eğer ortamda oksijen yoksa okside olamaz.Dolayısıyla önce " Laktat " ' a ve ardından " Laktik asit " ' e indirgenir.
Bizler koşarken eğer yeteri kadar nefes alamazsak, kandaki oksijen miktarı düşer.Kas hücrelerine ve hücrelerdende mitokondriye oksijen gelmediği zaman kaslarda piruvatın parçalanmasıyla laktik asit birikimi meydana gelir.Laktik asit ise yorgunluğa neden olur.
Kanda yeteri kadar alyuvar bulunmazsa, hücrelere taşınacak olan oksijen miktarı düşer.Dolayısıyla spor yaptığınızda çok çabuk yorulursunuz.Kanınızdaki alyuvar miktarını artırmak için yine doğadan bize sunulmuş ilaçlar vardır.
Başlıcaları kırmızı üzüm ve pekmez...
Nukleus (çekirdek)Adındanda anlaşılacağı gibi nukleus hücrenin genellikle merkezinde konumlanmıştır.Fakat vakuolu çok büyük olan bitki hücrelerinde nukleus vakuol ile hücre duvarına sıkışmış bir vaziyettedir.
Nukleus yapısı itibariyle bir zar ile kuşatılmıştır.Bu zarda tıpkı hücrenin kendi zarındaki gibi porlar bulunur. Nukleusun içerisinde ise DNA içeren kromatin iplikçikler bulunur.Bu iplikçikler hücre bölüneceği zaman katlanmalar yaparak kromozomları meydana getirirler.Nukleus genelde bir tane olmasına karşın bazı hücrelerde birden fazla sayıda olabilir.
Nukleusun içerisinde bulunan sıvıya ise " Karyolenf sıvısı " adı verilir.Sözünü ettiğimiz kromatin iplikçiklerde bu sıvının içerisinde yüzerler.Bu iplikler boyandıkları zaman üzerlerinde açık ve koyu renkte bantlar görülür.Bu bantların açık veya koyu görünmesi, o bölgedeki genlerin aktif veya inaktif olduklarını gösterir.
Soldaki şekilde nukleusun zarından alınan bir kesiti görmektesiniz.
Kesitte, nukleusun üzerindeki porların birisinin yarısı (por kesiti) diğerinin tamamı (nukleus zar poru) gösterilmiştir.Diğer kesitte ise nukleus zarının ayrıntıları gösterilmiştir.
Görüldüğü gibi nukleus zarıda iki tabakadan oluşmaktadır.Bu tabakalardan birisi nukleusun içerisine diğeri ise sitoplazmaya bakmaktadır.
Ribozomlarda okunan mRNA nın nukleustaki DNA da sentezlendikten sonra sitoplazmaya geçmesi resimde görülen bu porlar sayesinde olur.
Nukleusun içerisinde " Nukleolus " (Çekirdekcik) bulunur.Nukleolusun etrafında ise bir zar yoktur yani nukleus içerisinde serbest haldedir.Yapılarında ise protein, RNA, fibrilller ve nukleusa bağlı kromatin iplikçikleri bulunur.Yani kromatin iplikçikler normalde nukleus içerisinde bulunurlar fakat nukleolus içerisine uzantılar yaparlar.
Nukleus, hücre içerisindeki tüm metabolik faaliyetleri kontrol eden beyin gibi bir organeldir.Örneğin hücrenin ne zaman dış ortamdan besin alacağı, ne kadar protein üretileceği, ne kadar hormon ve enzim üretileceği hep nukleus kontrolündedir.Bu kontrol sistemi ise DNA ile ortamdaki inhibitör (engelleyici) etkenler arasındaki
" Feedback " mekanizması sayesinde olur.