SEVGİLİ ZİYARETÇİLERİMİZ, SİTEMİZ 25 GÜNLÜK BİR SİTEDİR,HENÜZ YAPIM AŞAMASINDA,
SAYFALARIMIZDA ,KATEGORİLERLE İLGİLİ YÜZLERCE KONU OLUCAK, BAZI SAYFALARIMIZDAKİ KONULAR ÇOK AZ,SİZLERİ BOŞ SAYFALARLA KARŞILAMAMAK İÇİN, AZDA OLSA İÇERİK EKLENDİ, LÜTFEN BİZİ TAKİP EDİN, BÜYÜMEMİZE TANIK OLUN,SAYGILARIMLA YÖNETİM..DİLEK
,www.gururum5.tr.gg
GURURUM5.TR.GG



bilgi-aramak

JEOLOJİK AFETLER NELERDİR,JEOLOJİ NEDİR,DEPREMLER VE FAYLAR

Yer hareketlerinin meydana getirdiği Afetlere, Jeolojik afetler denir.

Bunlar deprem, volkan patlamaları, toprak kayması, Tsunami ve benzerleri dir.

Yerküre'nin Yapısı

 

 

Yerküre’nin içi ile ilgili bilgilerimiz en üst katmanlar dışında ikinci elden. Yerbilim (jeoloji) çalışmaları ile yapısı anlaşılmaya çalışılan Yerküre’ye ait bilgilerin çoğu, sismik dalgaların incelenmesi sayesinde elde ediliyor. Depremler sonucu oluşan doğal veya bilim adamlarının oluşturduğu yapay sismik dalgaların, farklı yapılardaki katmanlarda farklı davrandıkları biliniyor. Yerküre içinde hareket eden bu dalgaların davranışlarının incelenmesi sonucunda Yerküre’nin iç yapısı anlaşılabiliyor.

 

Yerküre’nin merkezinde katı haldeki nikel ve demirden oluşan İç Çekirdek bulunuyor. Bu çekirdeği çevreleyen Dış Çekirdek ise, içindeki sülfür ve oksijen nedeniyle ergime noktası düştüğü için sıvı halde bulunan nikel ve demirden oluşuyor. 4.5 milyar yıldır soğumasına rağmen hala çok sıcak olan çekirdek, Yerküre’nin manyetik alanının oluşmasındaki etken. Daha sonra gelen ve Alt Manto ve Üst Manto diye ikiye ayrılan Manto ise, kısmen ya da tümüyle eriyik durumdaki kayaçlardan oluşan magmayı içeriyor. Demir, magnezyum, silikat ve oksijence zengin mineralleri içeren Manto’dan sonra, bu katmanların en incesi olan ve okyanuslar ile kıtaları barındıran Yerkabuğu bulunuyor. Oksijen ve silikatca zengin Yerkabuğu’nda, okyanus kabuğunu oluşturan bazalt, en çok

bulunan kayaç. Kıtalardan oluşan kabuk kısmı ise bazalt ile daha az yoğun olan granit, kumtaşı, kireçtaşı gibi kayaçları barındırıyor..

 

 

Yerküre’nin üst katmanları fiziksel olarak ayrı bir bölümlemeyle de incelenebilir. Litosfer (taşküre) adı verilen sert katman, Yerkabuğu ve Üst Manto’nun en üst kısmından oluşur. Astenosfer ise Litosfer’in altındaki, plastik özellikleri gösteren akışkan Üst Manto bölümüdür. Litosfer tek parça değildir, okyanus ve kıtaların sınırlarından farklı şekilde levhalara bölünmüştür.

 

Manto katmanı, yeryüzündeki hareketliliğin en büyük nedenidir. Manto’nun alt bölümleri üst bölümlerine göre çok daha sıcaktır. Burada oluşan konveksiyonda, daha sıcak olan magma yükselir, soğur, katılaşır ve Üst Manto’daki daha soğuk kayaların batmasına neden olur. Batan bu kayalar, tekrar ısınır, ergir ve yükselir. Henüz tam anlamıyla modellenemeyen bu devinim, Litosfer’deki levhaların hareket etmesine neden olur.

 

 

 

Levha Hareketleri


Yerküre’nin üst katmanları, bir bütün halinde olmayıp, sürekli hareket halinde olan levhalardan oluşuyor. Manto’daki ısı akımlarının neden olduğu bu hareketler sırasında levhalar birbirinden uzaklaşır, yaklaşır birbirlerine çarpar veya birbirlerine göre yanal olarak kayarlar . Bu hareketlilik sonucunda, levha sınırlarında, uzun zaman dilimleri ile baktığımızda yeni okyanuslar, yeni kıtalar, sıradağlar ve yanardağlar oluşur. Depremler ve volkanik aktivitelerin nedeni de tüm bu hareketliliktir.

Günümüzde Litosfer’de 1 ila 15 cm/yıl arasında hızlarla hareket halinde bulunan 7 ana ve birçok küçük levha vardır. Bunların hareketleri çok karmaşıktır ve bu hareketlerin niteliğinin tam olarak saptanması, depremlerin zamanının önceden kestirilmesi için gereklidir.

Levhaların birbirleriyle etkileşimleri bakımından levha hareketlerini 3 ana başlıkta toplayabiliriz. Uzaklaşma-ayrılma; yakınlaşma-çarpışma; yanal yer değiştirme-sıyırma. Bu hareket türleri, aynı zamanda bu sınırlarda oluşan depremlerin ve volkanik faaliyetlerin niteliklerini de belirler.

Uzaklaşan-Ayrılan Levhalar
Birbirinden uzaklaşan levhaların aralarındaki yarıktan , Astenosfer’den gelen magma yeryüzüne yayılır. Bu eriyik yüzeye çıktıkça katılaşır ve yerkabuğuna eklenir. Astenosfer’den gelen eriyik kuvvet uygulamaya ve böylece levhalar birbirinden ayrılmaya devam eder. Bu ayrılma genelde daha ince olan okyanus tabanında görülür ve Atlas Okyanusu ortasındaki sırt buna çok iyi bir örnektir. Bu ayrılma kıtada meydana gelirse yeni bir okyanus tabanı oluşuyor demektir. Doğu Afrika’daki ayrılma henüz bir deniz oluşması için yeterli değilse de, gidiş o yöndedir. Bu tür ayrılmalar, Astenosfer’den gelen eriyiğin katılaşarak taşlaşmasına ve levhaların büyümesine neden olur.
Uzaklaşan levhalar arasında Litosfer çok ince olduğu için, buralarda büyük depremlere yol açacak enerji birikimleri olmaz. Buradaki depremlerin odakları çoğu zaman yüzeye yakındır.

Yakınlaşan-Çarpışan Levhalar
Levhaların birbirine yaklaşması ve çarpışması ise üç değişik şekilde olabilir:
Okyanusal ve kıtasal levha karşılaşmalarında, daha yoğun olan okyanusal levha (yoğunluğu 2.8 - 3.0 gr/cm3) , kıtasal levhanın (yoğunluğu 2.7 gr/cm3) altına dalar. Alta dalan kısım derinlere indiğinde ergimeye başlar ve bu magmanın bir kısmı, kıta tarafında yanardağ kümelerinin oluşumuna neden olur. Güney Amerika Levhası’nın altına dalan Nazca Levhası’nın yol açtığı And Dağları buna bir örnektir.
İki okyanusal levhanın karşılaşmasında da, yine bir levha diğerinin altına dalar. Yukarıdakine benzer şekilde yüzeye çıkan magma okyanus tabanında yanardağlar oluşturmaya başlar. Eğer bu aktivite devam ederse, yanardağ okyanus yüzeyini aşabilecek yüksekliğe erişir ve adalar oluşur. Filipinler’deki birçok volkanik ada bu şekilde oluşmuştur.
İki kıtasal levhanın karşılaşmasında ise, genellikle levhalardan hiçbiri diğerinin altına dalmaz. Levhaların arada sıkışan bölümleri yeni dağlar oluşturur. Himalayalar’ın halen süren oluşumu buna iyi bir örnektir. Yakınlaşan ve çarpışan levhaların sınırlarında oluşan depremler çok değişik derinliklerde ve büyüklüklerde olabilir. Özellikle bir levhanın diğerinin altına daldığı bölgelerde odakları derinlerde büyük depremler oluşur.

Yakın

Yanal Yer Değiştirme-Sıyırma
İki levhanın birbirini sıyırarak yer değiştirmesi sırasında Litosfer’de artma veya azalma olmaz. İki levha arasındaki sürtünme çok fazla olduğu için harekete belli bir süre direnç gösterirler. Bu bölgede artan gerilim periyodik büyük depremler ile çözülür. Kuzey Anadolu fay hattı ve Kaliforniya’daki San Andreas fay hattında bu tip levha hareketi gözlenir.
Bu tip levha hareketlerinde oluşan depremlerin odakları çoğunlukla yüzeye yakın veya orta derinliktedir. Sürtünme ve kırılma uzunca bir hat boyunca oluşabileceği için büyük depremler meydana gelebilir.

 

Sıcak Noktalar
Depremlerin ve volkanik aktivitenin büyük bir kısmı levha sınırları çevresinde oluşur.

Ancak volkanik kökenli olan Hawaii ve çevresindeki adalar örneğinde olduğu gibi levha sınırlarına çok uzak volkanik oluşumlar da vardır. Bunlar mantoda sıcaklığı çok yüksek olan ve bu nedenle sıcak nokta adı verilen küçük bölgelerden yerkabuğu dışına kadar yükselen magma etkisiyle oluşur. Levhalar hareketli ama sıcak noktalar sabit olduğu için sıra sıra yanardağlar veya yanardağ adaları ortaya çıkar.

Levha hareketlerinin incelenmesi sayesinde bugün, büyük depremlerin % 90’nın nerelerde olacağını bilebiliyoruz. Ancak zamanlarını kestirmek için levha sınırlarındaki davranışların detaylı olarak araştırılması gerekiyor.

 

Depremler ve Faylar


Hareket eden levhalar birbirleri üzerine kuvvet uygularlar. Bu kuvvet yerkabuğundaki kayaçların direnç göstermesi yüzünden belli bölgelerde enerji birikimine yol açar. Bu enerji, kayaçların kırılma sınırını aştığı anda da kırılma (faylanma) olur ve biriken enerji açığa çıkar. Levha hareketleri yüzünden birikmiş gerilme enerjisinin aniden boşalmasına deprem diyoruz. (Ayrıca aktif volkanların içindeki hareketlilik nedeniyle oluşan ve yapıları farklı olan küçük depremler de vardır.)

 

 

 

 

Normal Fay

 

 

 

 

Ters Fay

 

 

 

 

Doğrultu Atımlı Faylar

 

 

 

 

 

 

Çöküntü: İki normal faylanma arasındaki bloğun çökmesi sonucu oluşur

 

 

 

Yükselti: İki normal faylanma arasında yüksekte kalan bloğa denir

 

Deprem sırasında açığa çıkan enerji, ses veya su dalgalarına benzeyen ve sismik dalgalar adı verilen dalgalar ile yayılır. Bu dalgalardan Cisim Dalgaları, P dalgaları ve S dalgaları olarak ikiye ayrılır. P dalgaları, en hızlı yayılan bu yüzden deprem kayıt aletlerinde (sismograf) en önce görülen dalgalardır. P dalgalarında, titreşim hareketi yayılma doğrultusu ile aynıdır. Daha yavaş yayılan S dalgaları, kayıt aletlerinde ikincil olarak görülen ve titreşim hareketi yayılma doğrultusuna dik olan dalgalardır. S dalgaları sıvı içinde yayılamazlar. Yüzey Dalgaları ise Cisim Dalgaları’na göre daha yavaş yayılırlar ancak genlikleri daha büyüktür. Hızı daha fazla olan Love ve genliği daha büyük olan Rayleigh dalgaları olarak ikiye ayrılırlar. Yapılarda yıkıma yol açan dalgalar S dalgaları ile yüzey dalgalarıdır.

 

Deprem sırasında yer yüzeyinde de çeşitli değişimler gözlenir:

Yüzey Kırıkları: Deprem odağı eğer yüzeye yakınsa yüzeyde de kırılmalar görülür.

Heyelanlar, Çökmeler: Sağlam olmayan zeminlerde, sismik dalgalar nedeniyle toprak hareket eder.

Çamur Akıntıları: Yeraltı sularının harekete geçmesiyle oluşur.

Zemin Sıvılaşması: Suya doygun zeminler sismik dalgalar nedeniyle sıvı gibi davranır.

Tsunamiler: Okyanus kıyılarında dev deniz dalgaları oluşur.
Kaynak:istanbulu-seviyorum.org
DAHA FAZLASI

Bugün 299 ziyaretçikişi burdaydı!


Koç | Boğa | İkizler | Yengeç | Aslan | Başak | Terazi | Akrep | Yay | Oğlak | Kova | Balık |
 
İLGİNÇ OLANLAR İLGİNÇ OLANLAR  İLGİNÇ OLANLAR  İLGİNÇ OLANLAR  İLGİNÇ OLANLAR
İLGİNÇ YAZILAR İLGİNÇ BİLGİLER İLGİNÇ RESİMLER İLGİNÇ VİDEOLAR İLGİNÇ HABERLER
İLGİNÇ HAYVANLAR İLGİNÇ ÇOCUKLAR İLGİNÇ HİKAYELER İLGİNÇ HOBİLER İLGİNÇ MESLEKLER
İLGİNÇ SÖZLER İLGİNÇ TASARIMLAR İLGİNÇ OYUNLAR İLGİNÇ SORULAR İLGİNÇ İSİMLER
İLGİNÇ SİTELER İLGİNÇ ŞEYLER İLGİNÇ REKORLAR İLGİNÇ YEMEKLER İLGİNÇ YAŞAMLAR


bilgi-aramak.tr.gg
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol